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Abstract. We discuss an interesting property of the Schrödinger equation under the repeated
application of a particular transformation, namely we show how this leads to a family of
Schr̈odinger equations with related analytic solutions. These solutions may, in turn, be used
to check computer codes forN -dimensional Schr̈odinger equations with potentials that do not
admit analytic solutions.

Analytic solutions of the three- (and more generallyN -) dimensional Schr̈odinger equation
are of considerable interest in quantum mechanics.

Consider theN -dimensional radial Schrödinger equation [1, 2][
− h̄2

2m

(
d2

ds2
− (k0− 1)(k0− 3)

4s2

)
+ V (s)− E

]
u0(s) = 0 (1)

wherek0 = N + 2l, and
∫∞

0 u2
0(s) ds = 1.

Applying the operationss = ρ2, u0(s) = ρ1/2u1(ρ), on equation (1), the resulting
equation is again a Schrödinger equation, namely[

− h̄2

2m

(
d2

dρ2
− (k1− 1)(k1− 3)

4ρ2

)
+ 4ρ2V (ρ)− 4ρ2E

]
u1(ρ) = 0 (2)

wherek1 = 2k0− 2.
A second application of this transformation (this time on equation (2)) yields[

− h̄2

2m

(
d2

dq2
− (k2− 1)(k2− 3)

4q2

)
+ 42q6V (q)− 42q6E

]
u2(q) = 0 (3)

with k2 = 2k1− 2, ands = q4.

The result of third, identical operation (on equation (3)) is[
− h̄2

2m

(
d2

dr2
− (k3− 1)(k3− 3)

4r2

)
+ 43r14V (r)− 43r14E

]
u3(r) = 0 (4)

with k3 = 2k2− 2, ands = r8. Generally aftern such operations,kn = 2kn−1− 2, and the
last two terms in the resulting equation involve 4n times a power ofr given by 2, 6, 14,
30, for n = 1, 2, 3, 4, etc.

It is clear from the above four equations (1)–(4) that repeated application of this
particular transformation on a radial Schrödinger equation retains the form of the original
equation. One thus obtains a collection, constituting a class of different but related
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Schr̈odinger equations. The above operations are independent of the details ofV (s) and
hence ofu0(s), andE. To obtain a family of related, analytically solvable Schrödinger
equations one must begin with a potentialV (s) in equation (1), whose eigenfunctionsu0(s)

and eigenvaluesE are known.
If V (s) is chosen to be a Coulomb potentialV (s) = −A/s, then (withm = c = h̄ = 1),

Enl = −A2/(2n2), and

u0(s) = Cs(k0−1)/2 e−As/n1F1

(
− n+ k0− 1

2
; k0− 1; 2As

n

)
(5)

wheren = (k0− 1)/2, (k0+ 1)/2, . . . .
For this choice ofV (s), the ground-state (i.e.n = (k0− 1)/2) wavefunction is

u0(s) = Csn e−As/n. (6)

One thus has the exactly solvable Schrödinger equation[
− h̄2

2m

(
d2

ds2
− (k0− 1)(k0− 3)

4s2

)
− A
s
+ A2

2n2

]
u0(s) = 0 (7)

with k0 = 2n+ 1.
For this choice ofV (s), equation (2) becomes[

− h̄2

2m

(
d2

dρ2
− (k1− 1)(k1− 3)

4ρ2

)
− 4A+ 2A2

n2
ρ2

]
u1(ρ) = 0 (8)

with ground-state wavefunction

u1(ρ) = Cρ2n−1/2 e−Aρ
2/n (9)

wherek1 = 4n.
This illustrates the known connection between the Coulomb and oscillator systems [3, 4]

where, in equation (8),

v(ρ) = 2A2

n2
ρ2 E = 4A.

For this choice ofV (s), equation (3) becomes[
− h̄2

2m

(
d2

dq2
− (k2− 1)(k2− 3)

4q2

)
− 16Aq2+ 8A2

n2
q6

]
u2(q) = 0 (10)

with k2 = 8n−2, i.e. it involves a quantum mechanical system with the polynomial potential

v(q) = 8A2

n2
q6− 16Aq2 (11)

(a repulsive oscillator, plus an attractive sextic term), eigenvalueE = 0, and ground-state
wavefunction

u2(q) = Cq4n−3/2 e−Aq
4/n. (12)

Similarly equation (4) becomes[
− h̄2

2m

(
d2

dρ2
− (k3− 1)(k3− 3)

4ρ2

)
− 64Aρ6+ 32A2

n2
ρ14

]
u3(ρ) = 0 (13)

with k3 = 16n− 6, i.e. it corresponds to the potential

v(q) = 32A2

n2
ρ14− 64Aρ6 (14)
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energy eigenvalueE = 0, and ground-state wavefunction

u3(ρ) = Cqρ8n−7/2 e−Aρ
8/n (15)

and so on.
These connections are useful, among other things because such exact solutions may

be used to test numerical Schrödinger equation solutions for polynomial potentials that
cannot be solved analytically. For instance, to see if the numerical solutions for an arbitrary
(G > 0) potentialv(ρ) = Gρ14+ Hρ6 are accurate, one may substitute the values forG,

andH given in equation (14) and see how closeE (ground-state numerical) is to 0, and the
numerical ground-state wavefunction is to equation (15). One has here a class of solutions
for arbitrary dimension, where the one-dimensional systems constitute a simple special
case. These may be compared to the one-dimensional quasi-exactly-soluble polynomial
Schr̈odinger equations discussed by Turbiner and co-worker [5]

There are an infinite number of analytic solutions, equation (5), of equation (7) and
these may each be converted into solutions of the related equations (8), (10), and (13) as
was illustrated above for the lowest eigenfunction (equation (6)).

An interesting observation in this connection is that given equation (1), one can also
proceed in the opposite direction from that involved in obtaining equations (2)–(4). Thus,
it is clear that the equation[

− h̄2

2m

(
d2

dr2
− (k−1− 1)(k−1− 3)

4r2

)
+ V (r)

4r
− E

4r

]
u−1(r) = 0 (16)

transforms into equation (1) under the above operations, withr = s2, andk0 = 2k−1− 2.
For the choices leading to equations (7), (8), (10), and (13), equation (16) becomes the

Schr̈odinger equation[
− h̄2

2m

(
d2

dr2
− (k−1− 1)(k−1− 3)

4r2

)
− A

4r3/2
+ A2

8n2r

]
u−1(r) = 0 (17)

a system subject to the repulsive Coulomb potentialv1(r) = A2/(8n2r) plus the attractive
r−3/2 power potentialv2(r) = −A/(4r3/2), wherek−1 = n+ 3/2, E = 0, and the ground-
state wavefunction is

u−1(r) = Cr(2n+1)/4 e−A
√
r/n. (18)

Other choices forV (s) in equation (1) yield different analytically soluble families of related
Schr̈odinger equations.
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